PPARgamma agonists exert antifibrotic effects in renal tubular cells exposed to high glucose.

نویسندگان

  • U Panchapakesan
  • S Sumual
  • C A Pollock
  • X Chen
چکیده

Peroxisome proliferator-activated receptor-gamma (PPARgamma) are ligand-activated transcription factors that regulate cell growth, inflammation, lipid metabolism, and insulin sensitivity. We recently demonstrated that PPARgamma agonists limit high glucose-induced inflammation in a model of proximal tubular cells (PTC; Panchapakesan U, Pollock CA, and Chen XM. Am J Physiol Renal Physiol 287: F528-F534, 2004). However, the role of PPARgamma in the excess extracellular matrix production is largely unknown. We evaluated the effect of 24- to 48-h 8 microM l-805645 or 10 microM pioglitazone on 25 mM D-glucose-induced markers of fibrosis in HK-2 cells. High D-glucose induced nuclear binding of activator protein-1 (AP-1) to 140.8 +/- 10.9% (P < 0.05), which was attenuated with L-805645 and pioglitazone to 82.3 +/- 14.4 (P < 0.01 vs. high D-glucose) and 99.3 +/- 12.2% (P < 0.05 vs. high D-glucose), respectively. High D-glucose increased total production of transforming growth factor (TGF)-beta(1) 139.6 +/- 6.5% (P < 0.05), which was reversed with L-805645 and pioglitazone to 68.73 +/- 5.7 (P < 0.01 vs. high D-glucose) and 112 +/- 13.6% (P < 0.05 vs. high D-glucose). L-805645 and pioglitazone reduced high d-glucose-induced fibronectin from 156.0 +/- 24.9 (P < 0.05) to 81.9 +/- 16.0 and 57.4 +/- 12.7%, respectively (both P < 0.01 vs. high D-glucose). Collagen IV was not induced by high d-glucose. L-805645 and pioglitazone suppressed collagen IV to 68.0 +/- 14.5 (P < 0.05) and 46.5 +/- 11.6% (P < 0.01) vs. high D-glucose, respectively. High D-glucose increased the nuclear binding of NF-kappaB to 167 +/- 22.4% (P < 0.05), which was not modified with PPARgamma agonists. In conclusion, PPARgamma agonists exert antifibrotic effects in human PTC in high glucose by attenuating the increase in AP-1, TGF-beta(1), and the downstream production of the extracellular matrix protein fibronectin.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

PPAR agonists exert antifibrotic effects in renal tubular cells exposed to high glucose

Panchapakesan, U., S. Sumual, C. A. Pollock, and X. Chen. PPAR agonists exert antifibrotic effects in renal tubular cells exposed to high glucose. Am J Physiol Renal Physiol 289: F1153–F1158, 2005. First published May 10, 2005; doi:10.1152/ajprenal.00097.2005.—Peroxisome proliferator-activated receptor(PPAR ) are ligand-activated transcription factors that regulate cell growth, inflammation, li...

متن کامل

Effect of BSA-induced ER stress on SGLT protein expression levels and alpha-MG uptake in renal proximal tubule cells.

Recent studies demonstrated that endoplasmic reticulum (ER) stress regulates glucose homeostasis and that ER stress preconditioning which induces an adaptive, protective unfolded protein response (UPR) offers cytoprotection against nephrotoxins. Thus the aim of the present study was to use renal proximal tubule cells (PTCs) to further elucidate the link between the BSA-induced ER stress and alp...

متن کامل

Relaxin signaling activates peroxisome proliferator-activated receptor gamma.

Relaxin is a polypeptide hormone that triggers multiple signaling pathways through its receptor RXFP1 (relaxin family peptide receptor 1). Many of relaxin's functions, including vascular and antifibrotic effects, are similar to those induced by activation of PPARgamma. In this study, we tested the hypothesis that relaxin signaling through RXFP1 would activate PPARgamma activity. In cells overex...

متن کامل

Renoprotective Effects of Aldose Reductase Inhibitor Epalrestat against High Glucose-Induced Cellular Injury

Diabetic nephropathy (DN) is the leading cause of end stage renal disease worldwide. Increased glucose flux into the aldose reductase (AR) pathway during diabetes was reported to exert deleterious effects on the kidney. The objective of this study was to investigate the renoprotective effects of AR inhibition in high glucose milieu in vitro. Rat renal tubular (NRK-52E) cells were exposed to hig...

متن کامل

Effect of berberine on the renal tubular epithelial-to-mesenchymal transition by inhibition of the Notch/snail pathway in diabetic nephropathy model KKAy mice

Renal tubular epithelial-to-mesenchymal transition (EMT) and renal tubular interstitial fibrosis are the main pathological changes of diabetic nephropathy (DN), which is a common cause of end-stage renal disease. Previous studies have suggested that berberine (BBR) has antifibrotic effects in the kidney and can reduce apoptosis and inhibit the EMT of podocytes in DN. However, the effect of BBR ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • American journal of physiology. Renal physiology

دوره 289 5  شماره 

صفحات  -

تاریخ انتشار 2005